
Python Packaging
2023-01-31

Pipenv

Pipenv is for ... applications
Pipenv might be a great example of porcelain software. It gathers together existing tooling with a 
sprinkle of policy and philosophy to enable you to work smarter and safer.

The problems that Pipenv seeks to solve are multi-faceted:

• You no longer need to use pip and virtualenv separately. They work together.

• Managing a requirements.txt file can be problematic, so Pipenv uses Pipfile and Pipfile.lock to 
separate abstract dependency declarations from the last tested combination.

• Hashes are used everywhere, always. Security. Automatically expose security vulnerabilities.

• Strongly encourage the use of the latest versions of dependencies to minimize security risks 
arising from outdated components.

• Give you insight into your dependency graph (e.g. $ pipenv graph).

• Streamline development workflow by loading .env files.

https://pipenv.pypa.io/en/latest/index.html

And what about my libraries?
When you’re focusing on determinism and supply-chain security for your application deployments, 
Pipenv can be an indispensable tool. With the proper tooling, it’s quite straightforward to capture and 
encode the characteristics of your requirements, ensure that they’re stored in such a way that automated 
tooling can help alert you to vulnerabilities and provide a simple and repeatable mechanism for 
ensuring that all deployments use the exact set of requirements considered compatible and secure.

For libraries, define abstract dependencies via install_requires in setup.py. The decision of which 
version exactly to be installed and where to obtain that dependency is not yours to make!

https://pipenv.pypa.io/en/latest/advanced/#pipfile-vs-setup-py

https://kennethreitz.org/essays/2016/02/25/a-better-pip-workflow
https://pipenv.pypa.io/en/latest/advanced/#pipfile-vs-setup-py
https://pipenv.pypa.io/en/latest/index.html
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities


Enhance!
PEP 517, 518 … 621, Oh, my!
TLDR; In the beginning, Python packaging was a source of sanity. Eventually the design, made for a 
different, simpler time, began to show its limits.

The following PEP represent an (incomplete) summary of community discussions on how packaging in 
Python can be guided into the future and define several new interfaces:

• A build-system independent interface (i.e., package your application without setuptools)
https://peps.python.org/pep-0517/

• A new interface for defining dependencies (i.e., define your requirements without setuptools) 
https://peps.python.org/pep-0518/

• A specification for writing project metadata
https://peps.python.org/pep-0621/
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-
project-metadata

• Using editable requirements in a PEP 517 world
https://peps.python.org/pep-0660/

Why all the fuss?
1. Software supply-chain security!

2. Deterministic deployments!

3. Portability!

4. Reduce false positives and noise from automated systems!

5. Fun!

6. Profit!

Further reading
https://setuptools.pypa.io/en/latest/userguide/quickstart.html

https://python-poetry.org

https://www.pantsbuild.org/

https://flit.pypa.io/en/stable/

https://pypi.org/project/enscons/

https://peps.python.org/pep-0660/
https://pypi.org/project/enscons/
https://flit.pypa.io/en/stable/
https://www.pantsbuild.org/
https://python-poetry.org/
https://setuptools.pypa.io/en/latest/userguide/quickstart.html
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-project-metadata
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-project-metadata
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0517/

	Python Packaging
	Pipenv
	Pipenv is for ... applications
	And what about my libraries?

	Enhance! PEP 517, 518 … 621, Oh, my!
	Why all the fuss?
	Further reading


